0=4.9t^2+4t-100

Simple and best practice solution for 0=4.9t^2+4t-100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=4.9t^2+4t-100 equation:



0=4.9t^2+4t-100
We move all terms to the left:
0-(4.9t^2+4t-100)=0
We add all the numbers together, and all the variables
-(4.9t^2+4t-100)=0
We get rid of parentheses
-4.9t^2-4t+100=0
a = -4.9; b = -4; c = +100;
Δ = b2-4ac
Δ = -42-4·(-4.9)·100
Δ = 1976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1976}=\sqrt{4*494}=\sqrt{4}*\sqrt{494}=2\sqrt{494}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{494}}{2*-4.9}=\frac{4-2\sqrt{494}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{494}}{2*-4.9}=\frac{4+2\sqrt{494}}{-9.8} $

See similar equations:

| -1=3o-4o | | -6(4-6x)-8(x+8)=-60 | | 0=2x^2-7x-3 | | 25–5(4+3x)=15 | | 3j−2=1j= | | 4(y-3)=-5y+51 | | -29=3+4x | | 54x+81=41 | | 2-x=22-3x | | -6(4-6x)-8(x+8)=-6 | | 25+5(4+3x)=15 | | 2q−6=2q= | | -6x=16-2x | | 5+2m=7m= | | -6=2s-5s | | 8+5x=6 | | 248=8(3-4k) | | 24/21x=32 | | 16x-16x=11 | | .33x^2-7=43 | | X/7-7=2x/7-8 | | -42=12a+18 | | 4(6y+3)=1/3(6.75-0.75y) | | 4/5x-¼x=11 | | 9x-4=325 | | 2+2(7a+7)=114 | | 21=10x-x^2 | | 2(5+y)+y=13 | | 10n=1/10,000 | | 5(8x-7)+4x=317 | | 6×-5=2x+25 | | (3a+7)+2+(3a+7)=2 |

Equations solver categories